Reinforcement Learning: Team 1 Final Report

Junghun Ju", Jae Yeon Kim", Jonghyeok Lee®, and Soheun Yi'

"Department of Mathematics, Seoul National University
“Department of Statistics, Seoul National University

June 22, 2022

Abstract

For the Chain MDP task, we consider the first-visit MC and the modified version of the
bootstrapped DQN algorithm by carrying out weighted sampling on the agents to promote
exploration while exploitation is ongoing by a sole agent. This modified BDQN method shows
prominent adaptability, with respect to the number of states, amidst remarkable sample ef-
ficiency. For the Lava task, we start our approach through tabular methods with planning,
namely Dyna-Q and prioritized sweeping. For generalization, we consider various function ap-
proximation methods based on DQN to secure versatility against the change of environment.
With some tweaks on the well-known methods, modified methods we call ‘prioritized sweeping
with transition probability estimation’ (tabular) and ‘DQN with Q-network’ (function approx-
imation) yield satisfactory results. The modified BDQN and DQN with Q-network are chosen
as our final algorithms for submission for each task, respectively.

Keywords— DQN, Bootstrapped DQN, Weighted posterior sampling, Prioritized sweeping, Neural
network.

1 Methods we tried

The boldfaced algorithms are our final choices for submission.

1.1 Chain MDP
o First-visit MC method: Policy is derived according to the G-value calculated within the episode.
e BDQN (Bootstrapped Deep Q-learning) with weighted sampling

As a deceptive and easy-to-reach local optimum exists, we focus on choosing an algorithm that readily
escapes from local optima and explores ardently. In this context, we borrow the bootstrapped deep Q-
learning (BDQN) approach suggested in [Osband et al| (2016). We build K DQN agent heads, and Q-
function is learned for each agent on a bootstrap sample from the replay buffer. In each episode, greedy
action is taken for the sampled single agent. However, there are three critical modifications we make for
this specific task.

The part we modify from the original algorithm is first, instead of uniform sampling for the DQN
agent heads, that we weigh the probability an agent which derives a high average reward in each episode

is selected by taking the softmax function on the exponential moving average of rewards. We expect that
learning about the global optimum in all agents will be accelerated through this weighted sampling.

Moreover, to prevent the agents from settling on the suboptimal local optima, we reset the agent when
it is determined that the agent stays in any local optimum. Specifically, if the change in the exponential
moving average of reward is sufficiently small to be less than the set threshold for a certain number of
episodes, the Q-network of the agents is initialized to start a new search.

Lastly, in addition to K DQN agents built for exploration, we build a single DQN agent solely for
exploitation. This exploit DQN agent learns from the replay buffer, without being masked or reset. Each
episode’s probability of taking action by choosing the exploit DQN agent flexibly changes. That is, the
probability is added by a hyperparameter « if the minimum of the last five rewards by the exploit DQN
agent is greater or equal to the maximum of all the rewards so far by the explore DQN agents, and subtracted
by « otherwise. This probability is set to be over 0.1.

We implement the Poisson masks, namely M;[k] ~ Poi(1), to mimic the standard bootstrapping behav-
ior. The flowchart of the modified BDQN algorithm is presented in Figure [I]

new episode

exploit/explore

ploit via DQN:

explore via BDQN
reset DQN if cum_reward
choose DQN

3 does not change
for the episode__

__ iterations within _____ 7 """ T
the episode
Y Vv \ 2
DQN DQN DQN : Exploit
Agent | L LLLL.i.iiiiiieiee... Agent | ... Agent : DQN
1 action_k K cum_reward Agent

E of the episode

update weights
via gradient

| greedy
action

ChainMDP env

greedy
action

I s, a, 1, ns, done

Figure 1: Flowchart of modified BDQN algorithm in Chain MDP

1.2 Lava
1.2.1 Tabular methods

Basically we utilize state-space planning methods. With planning, we expect information about the path
toward the goal propagates quickly throughout the grid.

e Dyna-Q : We build a model from which to derive simulated experience. For each step in the episode,
Q-planning and Q-learning occur in parallel to improve the Q-function. The model is updated for
each state-action pair (s,a) to output the most recently experienced (s’,r) given (s,a).

e Prioritized sweeping : As in [Sutton and Barto| (2018), we consider prioritizing the "urgent" ones
rather than uniformly sampling a state-action pair. Namely, a queue is maintained according to the
value P = |(target) — Q(s, a)| for each pair. We apply SARSA update instead of Q-update concerning
stochasticity in the environment.

e Prioritized sweeping with transition probability estimation : When applying the general Dyna-Q
method, the difficulty was to adapt to stochasticity. We referred to Manteghi et al.| (2015) and
made a provisional conclusion that it was because there were many parts close to lava in the optimal
path. In fact, when stochasticity exists, we observed that the optimal path passes far from lava even
if the distance gets a little longer, and we thought it would be good to create an agent to learn
such a situation. Therefore, we slightly variate the model so that it stores N(s,a, s’), the number of
visits to s,a and s’. By using the model of the agent, we attempt to directly estimate the transition
probability as p(s’, r|s,a) = % Then we estimate the Q-function with full-backup from the
formulation Q(s,a) = > p(s,a,s’)(r + ymaxQ(s’,a’)). We provide the pseudocode for this method
in Algorithm

Algorithm 1 Prioritized sweeping with transition probability estimation

Initialize Q(s, a), Model(s,a,r,s’) and PQueue to empty
1) Training
while done do
s + current state, a <+ e-greedy(s)
Execute action A, and observe 7, s’
if (s,a,r,s') € Model then
N(s,a,r, s+ =1
else
append (s, a,r,s") to Model
end if
P = |fullbackup(s,a) — Q(s, a)|, and insert (s, a) into PQueue with priority P
Planning Steps (Use fullbackup method for update)
end while
2) fullbackup (s, a)
for (S, A, R,S") in Model do
if (S, A) = (s,a) then

B/ rls, a) = SXE Qs a) = X p(s,a,8)(r + ymax Q(s', ')
end if
end for

1.2.2 Function approximation methods

We carry out several variations of DQN methods. We began with a deep search by a neural network with
layers of depth 5. However, this deep method required many episodes to attain optimality and therefore
showed low sample efficiency, and in addition, the time required for calculation was too long. No prominent
improvement was made by some tweaks in deep search, thus we utilize shallow layers to obtain better
performance.

e Function approximation with DNN : With a 2-dimensional feature vector, we utilize Deep NN of
depth 5.

e UCB-like algorithm : We found DNN had difficulty escaping around the starting point in the buffer.
Therefore, we encourage exploration by giving bonuses on the values of unexperienced state-action
pairs.

¢ DQN with Q-network : Even implementation of UCB did not lead to a noticeable improvement,
so we tried DQN with shallow layers; as this network is not ‘deep’, we named this algorithm ‘DQN
with Q-network’. Figure [2]is the flowchart for this method.

replays '—» train <—{ learn

[[

DQN

action

buffer lava grid env

s, &, r, ns, done

Figure 2: Flowchart of DQN with Q-network in Lava

2 Results

Among the algorithms we tried, we list the results for those that showed worthy performance compared to
the others. We omit the performance scores as the following algorithms all successfully attain the possible
maximum value. We run each algorithm for 30 seeds to measure and display sample efficiency and construct
a histogram of AUC on episode-reward trajectories.

2.1 Chain MDP

As our modified BDQN yields way better performance than the first-visit MC, we solely show the result of
BDQN.

Figure [3] summarizes the sample efficiency of modified BDQN. We run 1000 episodes for each of the 30
seeds.

]
] count 30.000000
mean 9545.856633

- std 408.327662
5 min 8222.294000
g 4] 25% 9369.288250
50% 9727.201500

21 75% 9803.479500
max 9970.044000

8250 8500 B750 9000 9250 9500 9750 10000
AlC

Figure 3: Sample efficiency of modified BDQN. n_state=10.

To see how flexible our modified BDQN method is, we reform the environment by adjusting the num-
ber of states, which is 10 in the default settings. With n_state = 15 and 20, modified BDQN produces
satisfactory results. The episode-reward trajectory plots are listed in

2.2 Lava

We summarize the algorithms that give the best results, one for each tabular method and the function
approximation method, namely prioritized sweeping with transition probability estimation and DQN with
Q-network, respectively. To save some time, we run only 300 episodes for sample efficiency estimation for
each seed. These short runs are justified, as shown in [A:2] for each algorithm tends to converge well way
before 300 episodes.

Figure [4] and [5] show the sample efficiency records for prioritized sweeping with transition probability
estimation and DQN with Q-network, respectively. Note that, as expected due to the rule of thumb that the
tabular methods work better in this setting with abuse of information about the environment, prioritized
sweeping yields better results than DQN.

-
count 30.000000
mean 202.386667
g std 2.212568
: min 197.680000
& 25% 200.742500
50% 203.045000
75% 204.602500
max 204.970000

198 199 200 201 202 203 204 205
AC

Figure 4: Sample efficiency of prioritized sweeping with transition probability estimation. Grid shape =
6 x 10, stochasticity = 0.

’ count 30.000000
n mean 186.461000
g std 6.114923
g,] min 171.910000
g 25% 184.132500
50% 188.115000

] 75% 189.800000
max 196.970000

185
AlIC

Figure 5: Sample efficiency of DQN with Q-network. Grid shape = 6 x 10, stochasticity = 0.

We measure the adaptability of two methods via stochasticity in the dynamics, i.e. the probability
of failing to take the intended action, and the change of the grid map size. In particular, we consider
stochasticity = 0,0.02,0.05, and 15 x 15 grid map. Except for the failure of the DQN with the Q-network
method in the environment of stochasticity 0.05, they show a good adaptation to the changing environments
overall. [A73] delivers the specific results.

3 Conclusion & Suggestions

Due to our evaluation result, we choose the modified BDQN algorithm with weighted sampling for the
Chain MDP task, and DQN with Q-network for the Lava task as our final methods. Speaking of the Lava
task, although the result is better with the prioritized sweeping type method, we discard this as the tabular
method requires the number of states, and it could be considered as the abuse of information about the
environment in fully generalized settings.

In the modified BDQN algorithm of the Chain MDP task, the most challenging part was to take DQN
agents out of the local minima in terms of episodic reward, and we were able to successfully resolve this
part by resetting the stall agents. Furthermore, to maximize and stabilize episodic reward, we have added a
DQN agent which solely pursues exploitation and adaptively sets the probability of deciding actions via this
exploitation DQN agent when each episode starts. This agent achieved the maximum performance(500 for
50 episodes) and arguably high sample efficiency(9545 for 1000 episodes). The adaptive method for deciding
exploitation probability seems to have much room for improvement, although we could not achieve those
due to the lack of computational power.

Considering the tabular solutions for the Lava task, a prioritized queue promotes the essential updates in
the Dyna-(Q method, leading to faster learning with less iteration. This improvement by prioritized sweeping
is assumed to be generalized and even strengthened in the general environment of larger combinations of
tuples in the buffer.

Our biggest challenge was resolving the deep search failure on the Lava task. The main focus of this
task was to approximate the Q function with excessively high precision since a minuscule error in Q values
would render a different greedy policy far from an optimal one. Although we tried to perform the function
approximation with a depth 5 network utilizing the full computing power we possess, the physical limit
of such capacity hindered our approximation from being precise enough to return an optimal policy. To
detour this hardship, we used a shallower network for function approximation and enlarged input dimension
from 2 to the dimension of non-modified state feature dimension and consequently achieved a successful

performance and sample efficiency (186 for 30 episodes).

One thing more, our implementation of the UCB-like algorithm was dissatisfactory. For this, consider-
ing where UCB operates successfully, it fortunately enables exploration to the unseen region and fosters
escape from local optima. However, applying the UCB bonus as a function approximation on the function
approximation method also sophisticates the problem. Also, as there exists a negative reward of -0.01 on
failing to reach the goal, it seems that exploration itself will not be lacking. Therefore, whereas exploration
is an important factor in this task, our UCB-like algorithm is not helpful enough.

A Additional plots
A.1 Modified BDQN : adaptability

IS

o 200 200 €00 800 1000 0 200 400 600 800 1000 [200 400 600 800 1000
episades episodes episades

(a) n_state = 10 (b) n_state = 15 (c) n_state = 20

Figure 6: Adaptability of modified BDQN for the number of states

A.2 Lava : episode-reward trajectory

cumuiative reward

0 0 100 100 2000 2500 3000
00 0 %0 episode.
episode.

(a) P. sweeping with (b) DQN with
trans. prob. est. Q-network

Figure 7: Episode-reward trajectory plots for Lava solving algorithms

A.3 Lava : adaptability

cumulative reward
cumulative reward

cumulative reward

o 100 200 300 400 500 o 100
episode

(a) Stochasticity = 0 (b) Stochasticity = 0.02 (¢) Stochasticity = 0.05

200 300 400 500 0 100 200

300 400 500
episode

episode

Figure 8: Adaptability of prioritized sweeping with transition probability estimation w.r.t. stochasticity

In the case of DQN with Q-network with stochasticity = 0.05, it completely fails.

0 500 1000 1500 2000 2500 3000 0 S0 100 150 200 250 300 350 400
episode episode

(a) Stochasticity = 0 (b) Stochasticity = 0.02

Figure 9: Adaptability of DQN with Q-network w.r.t. stochasticity

0 500 1000 1500 2000 2500 3000
episode 0 500 000 1500 2000 2500 3000

(a) Prioritized sweeping with “"
DQN h O- k
transition probability estimation (b) DQN with Q-networ

Figure 10: Adaptability of Lava solving methods w.r.t. grid size

-200 -150 -100 sn 0 s 10 150 w0 10 120

5

(a) DQN with Q-net. ; (b) DQN Wlth Q-net.) P. sweeping with (d) P. sweeping with
Stochasticity = 0.02 15 x 15 grid est., Stochast. = 0.05 t. ; 15 x 15 grid

Figure 11: Comprehensive results for adaptability on the Lava task

References

Manteghi, S., Parvin, H., Heidarzadegan, A., and Nemati, Y. (2015), “Multitask Reinforcement Learning in
Nondeterministic Environments: Maze Problem Case,” in Mexican Conference on Pattern Recognition,
Springer, pp. 64-73.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016), “Deep exploration via bootstrapped DQN,”
Advances in neural information processing systems, 29.

Sutton, R. S. and Barto, A. G. (2018), Reinforcement learning: An introduction, MIT press.

	Methods we tried
	Chain MDP
	Lava
	Tabular methods
	Function approximation methods

	Results
	Chain MDP
	Lava

	Conclusion & Suggestions
	Additional plots
	Modified BDQN : adaptability
	Lava : episode-reward trajectory
	Lava : adaptability

