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Abstract

A prognostic score is a measure that summarizes the information about the potential
outcomes for the control group, Y (0), that is relevant to the covariates. It is useful
for estimating the average treatment effect on the treated (ATT). However, the one-
dimensional prognostic score proposed by Hansen B. B. [1] may not be sufficient
in certain situations where Y (0) consisted of two independent components. To
address this issue, we propose a multi-dimensional prognostic score and an effective
method for extracting the prognostic score under a specific simulated model. We
use independent component analysis and mutual information regression to obtain
the prognostic score. Finally, we also demonstrate that our method is superior to
using a propensity score with inverse probability weighting (IPW) for estimating
ATT.

1 Introduction

In an observational setting, where X are covariates and Y (0), Y (1) are potential outcomes for the
control and treated groups, respectively, the higher the dimension of X , the greater the likelihood that
some of the information it contains will be irrelevant to the potential outcomes. This is known as the
curse of dimensionality. To overcome this issue, one can use a propensity score or prognostic score.
A propensity score summarizes the information of receiving treatment into a scalar (P (Z = 1|X)),
while a prognostic score summarizes the information of Y (0). These scores are useful for calculating
the average treatment effect on the treated (ATT). The prognostic score was first proposed in [1],
but the authors focused on the one-dimensional prognostic score. However, there are many cases in
which all the information on the potential outcomes of controls cannot be compressed into a single
real number.

In this paper, we explore the case where the distribution of potential outcomes of the controls cannot
be characterized by a scalar-valued prognostic score. To address this, we extend the one-dimensional
prognostic score to a multi-dimension. We use independent component analysis (ICA) and mutual
information (MI) regression to uncover the multi-dimensional prognostic score of observational data
samples. We show that ICA and MI regression can recover the most informative components of Y (0)
in our simulated data samples and consider these components as a multi-dimensional prognostic
score. Furthermore, we validate the quality of the estimated prognostic score in estimating the
average treatment effect of the treated (ATT) using a three-layer neural network and Random Forest.
Our results show that estimating ATT using our proposed method achieves higher accuracy than
using a propensity score and inverse probability weighting (IPW). We attach the code of the Python
implementation of the proposed method.
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2 Backgrounds

2.1 Prognostic Score and Propensity Score

Definition 1. ψ(X) is a prognostic score if
Y (0) ⊥⊥ X | ψ(X)

where X denotes covariates and Y (0) denotes the potential outcome for those not receiving
treatment[1].

Definition 1 states that we call ψ(X) a prognostic score when ψ(X) has enough information for
Y (0). A prognostic score can be posed equivalently as the following:
Proposition 1. If ψ(X) is a prognostic score, it satisfies

P (Y (0) |X) = P (Y (0) |ψ(X)),

which roughly means ψ(X) contains all information of X that is relevant to Y .

This proposition renders the following proposition, which we can exploit to calculate the ATT:
Proposition 2. The ATT can be estimated with a prognostic score, ψ(X):

E[Y (1)− Y (0) | Z = 1] = E[Y | Z = 1]− E[E[Y | ψ(X), Z = 0] | Z = 1]

Proof.
E[Y (1)− Y (0) | Z = 1] = E[Y (1) | Z = 1]− E[Y (0) | Z = 1]

= E[Y | Z = 1]− E[E[Y (0) | X] | Z = 1]

(∵ Proposition 1) = E[Y | Z = 1]− E[E[Y (0) | Ψ(X)] | Z = 1]

= E[Y | Z = 1]− E[E[Y (0) | Ψ(X), Z = 0] | Z = 1]

= E[Y | Z = 1]− E[E[Y | Ψ(X), Z = 0] | Z = 1].

On the other hand, a more standard approach to ATT estimation is utilizing a propensity score, as
presented in the following proposition.
Proposition 3. Assuming a propensity score ρ(X) satisfies 0 < ρ(X) < 1, the ATT can be estimated
through Inverse Probability Weighting (IPW):

E[Y (1)− Y (0) | Z = 1] = E[Y | Z = 1]− P (Z = 0)

P (Z = 1)
E
[

ρ(X)

1− ρ(X)
Y | Z = 0

]

Proof.
E[Y (1)− Y (0) | Z = 1] = E[Y (1) | Z = 1]− E[Y (0) | Z = 1]

= E[Y | Z = 1]− E[Y (0) | Z = 1]

The second term can be calculated with IPW,

E[Y (0) | Z = 1] =
∑
X

P (X | Z = 1)E[Y (0) | X,Z = 1]

=
∑
X

P (X | Z = 1)E[Y (0) | X,Z = 0]

=
∑
X

P (X | Z = 1)E[Y | X,Z = 0]

(i)
=

∑
X

P (X | Z = 0)
P (Z = 0)

P (Z = 1)
E
[

ρ(X)

1− ρ(X)
Y | X,Z = 0

]
=
P (Z = 0)

P (Z = 1)
E
[

ρ(X)

1− ρ(X)
Y | Z = 0

]
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which completes the proof. Note that (i) is due to
P (X | Z = 1)

P (X | Z = 0)
=
P (Z = 0)P (X,Z = 1)

P (Z = 1)P (X,Z = 0)
=
P (Z = 0)

P (Z = 1)

ρ(X)

1− ρ(X)
.

A prognostic score has two similarities with a propensity score. First, both summarize the information
into a scalar and satisfy the independence conditions Z ⊥⊥ X | ρ(X) for a propensity score
and Y (0) ⊥⊥ X | ψ(X) for a prognostic score. Second, both are useful for estimating ATT by
proposition 2 and 3.

While a prognostic score contains valuable information in data samples, a one-dimensional form has
a significant limitation. For example, consider a scenario where the true Y (0) is composed of the
product of two independent covariates X1 and X2 including a noise term:

Y (0) = (X1 + ϵ1)(X2 + ϵ2). (1)

Both X1 and X2 must be specified to determine the distribution of Y (0). This indicates that a
one-dimensional prognostic score is insufficient to fully capture the information of Y (0) in specific
situations. Therefore, we propose a multi-dimensional prognostic score to apply better the concept
of a prognostic score to the real world. We will use Independent Component Analysis and Mutual
Information regression to find a multi-dimensional prognostic score given data samples.

2.2 Independent Component Analysis (ICA)

Independent component analysis (ICA) is a method to extract independent components from mixed
observational data, assuming the unmixed components are non-Gaussian distributions [2]. To
informally present the problem, the ICA finds the mixing matrix A and the unmixed components U
satisfying X = UA, where X is given observational data.

The non-Gaussianity assumption of each component of U is crucial; the ICA tries to find A that
maximizes ‘non-Gaussianity’ of U , so the method will not work if U follows Gaussian distribution.
One of the widely used ICA methods is FastICA [2], which maximizes the kurtosis of U to obtain
non-Gaussian components. This method is implemented in Python package scikit-learn [5], and
we use this implementation throughout our experiments.

2.3 Mutual Information (MI)

Informally speaking, the mutual information between two random variables X , Y is defined as
I(X;Y ) = DKL(P(X,Y )∥PX ⊗ PY )

where DKL denotes the KL divergence, and PX and PY are distributions of X and Y respectively,
and P(X,Y ) is the joint distribution of (X,Y ).

I(X;Y ) = 0 implies the joint distribution P(X,Y ) and PX ⊗ PY are identical thus X and Y are
independent. In the same sense, smaller I(X;Y ) means P(X,Y ) and PX ⊗ PY are ‘closer’. Roughly
speaking, this indicates X and Y share less information. I(X;Y ) can be estimated from samples
[4], and it is implemented in scikit-learn [5].

3 Method

3.1 Problem Statement

We consider a scenario where the observed covariates X ∈ Rd and potential outcomes Y (0),
Y (1) ∈ R are influenced by unmeasured confounders U ∈ Rd. We assume that the relationship
between X and U is linear, such that X = UA for some mixing matrix A ∈ Rd×d. Under these
assumptions, we aim to solve the following problems:

1. With prior knowledge of the minimum dimension of prognostic scores, we find (estimate)
an adequate prognostic score.

2. Using the estimated prognostic score, we calculate the ATT from the given data.
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3.2 Model Specification

In this section, we provide a more detailed specification of the data-generating model that was
described in the previous section. Consider

Ui = [ui1, ui2, . . . , uid] (2)
Xi = UiA (3)

Yi(0) = f0(u1, u2, . . . , uk, ϵ1, ϵ2, . . . , ϵk) (4)
Yi(1) = f1(u1, u2, . . . , uk, . . . , ud, ξ1, ξ2, . . . , ξk, . . . , ξd) (5)
Zi = Bernoulli(pi), pi = f(Xi) (6)
Y = (1− Z)Yi(0) + ZYi(1) (7)

where U , X , Y (0), and Y (1) are defined as before, Z is a treatment vector depend on X , and ϵi,
ξi

i.i.d.∼ N (0, σ2) are random noises.

According to the model specification, the potential control outcome Y (0) is determined by the
unmeasured confounders u1, . . . , uk. This means that a prognostic score must include all information
about these confounders. If u1, . . . , uk are independent, then a prognostic score should be at least a
k-dimensional vector in order to capture all of this information. For example, if k = 2 and u1, u2 are
independent, then a prognostic score should be at least a 2-dimensional vector.

3.3 Finding a Prognostic Score

The data generation procedure implies that a prognostic score cannot be one-dimensional. The lowest
possible dimension of a prognostic score is k in our model: we assume this knowledge is accessible.
Given this knowledge, we propose the following procedure for estimating a prognostic score,

1. Given X , perform ICA to recover U (up to scalar multiplication)

2. Estimate the MI between Y (0) and each component of recovered Û

3. Sort the components of Û in descending order according to the MI estimates of step 2 and
select the top k components.

We provide more details about the three-step procedure for prognostic score estimation that was
introduced earlier. The first step of this procedure is to recover the unmeasured confounders U .
The recovered version of U is denoted as Û . If we know that the observed covariates X are a
linear combination of U with a noise term, then we can use ICA to recover U . We assume that the
number of unmeasured confounders is known and ICA may not be able to recover U if the number
of confounders is incorrect. The second step of the procedure is to apply mutual information (MI)
regression between Y (0) and the estimated confounders Û . This step is motivated by the idea that the
MI between two variables decreases as they become more independent, and that zero MI indicates
that the two variables are perfectly independent. To implement this step, we use the MI regression
method by [4] as implemented in [5]. The final step is to select the informative components of Û
that are relevant to Y (0). We expect that if we choose the high MI estimation components of Û that
generate Y , they will be an appropriate prognostic score. Since we assume that we have access to the
value of k, we select the top-k components of the MI regression outcome as the prognostic score.

3.4 Evaluating a Prognostic Score via Estimation of the ATT

With the prognostic score ψ(X) obtained in the previous section, we can now estimate ATT using
Proposition 2 as:

E[Y (1)− Y (0) | Z = 1] = E[Y | Z = 1]− E[E[Y | ψ(X), Z = 0] | Z = 1] (8)

To evaluate the right-hand side of equation 8, we need to estimate both E[Y | Z = 1] and
E[Y |ψ(X), Z = 1]. The former can be estimated directly from the data, but the latter requires a
more complex estimation procedure. We use machine learning (ML) approaches, specifically neural
networks (NN) and random forests (RF), to estimate E[E[Y | ψ(X), Z = 0] | Z = 1].
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4 Experiments

We use the ATT as a metric to evaluate the accuracy and effectiveness of our proposed method for
extracting a prognostic score from the data. This value can be estimated using Propostion 2, and we
train ML models to estimate the second term of the equation 8. Once we have obtained the prognostic
score using ICA and MI regression, we train a model to predict Y (0) under the control group using
the prognostic score as input. To analyze the data and make predictions, we use two ML models: a
three-layer neural network (NN) and a random forest (RF) which 100 estimators and a maximum
depth of 5. We also utilize a propensity score to estimate the ATT using Proposition 3. We use a
neural network to estimate the propensity score in this case. This will allow us to compare the results
of the original method that uses a propensity score.

4.1 Simulated Data

In this section, we provide the result of a toy experiment. We now specify the parameters we used
regarding the model (2)–(7). We set d = 100, k = 2, and σ = 0.1 in the model. We sample
N = 2000 units through the following:

ui1 = σ1(sin(2i/M) + ϵi1) ∈ R2000

ui2 = σ2(sign(sin(2i/M)) + ϵi2) ∈ R2000

ui3 = σ3(2frac(i/M)− 1 + ϵi3) ∈ R2000

ui3 = σ4(2frac(3i/2M)− 1 + ϵi4) ∈ R2000

X = UA

=

[
ui1 ui2 ui3 ui4

]
A ∈ R2000×100

Zi ∼ Bernoulli(pi), pi = | sin(
∑

jxij)|

where M = 250, frac(x) := x− ⌊x⌋, ϵil
i.i.d.∼ N (0, 0.22), A is sampled from the standard normal

distribution, and σl’s are positive numbers that standardizes U:,l.

4.2 Experiment Results

Recovering Û via ICA

We perform ICA to recover Û . The horizontal axis of Figure 1 represents each unit. Figure 1 depicts
that ICA recovers U very well; The only difference is scaling.

Figure 1: Ground truth U and estimated Û

Estimating ATT

We present the estimated ATT obtained using our proposed method with both the NN and RF and the
results of a propensity score-based ATT estimation which is denoted as IPW. We further provide a
boxplot in Figure 2.

Our proposed method for extracting the prognostic score relies on the assumption that we know the
number of dimensions required to predict the prognostic score accurately. Meanwhile, as shown in
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Table 1 and Figure 2, the performance of our method may change if this assumption is not met (i.e.,
we do not know the minimum possible dimension of a prognostic score). If we assume a prognostic
score to be a scalar (i.e., k = 1), the estimated ATT is significantly biased upwards. As we assume a
prognostic score to have a dimension greater than 1, the bias gets reduced.

As shown in the figures, our proposed method using a random forest presents far smaller bias than
the IPW method; our procedure works better than the standard IPW approach.

k NN RF IPW Ground Truth
1 -0.1320±0.0314 -0.1199±0.0023

-0.1368±0.0036 -0.16672 -0.1634±0.0137 -0.1628±0.0016
3 -0.1527±0.0068 -0.1636±0.0015
4 -0.1641±0.0114 -0.1635±0.0015

Table 1: Estimated ATT. Mean ± Std for 10 repetitions. k stands for a prognostic score dimension.

Figure 2: The boxplot of the ATT estimation results. The blue dashed line represents the ground truth
ATT, k stands for a prognostic score dimension, and x labels indicate a method used. NN and RF
mean our method using a prognostic score and IPW means a method using a propensity score.

5 Conclusion

In this study, we introduced the concept of a multi-dimensional prognostic score and an effective,
data-driven method to extract it, which exploits mutual information and the independent component
analysis. We also demonstrated its advantages over a propensity score when applied to the ATT
estimation problem. Using a multi-dimensional prognostic score resulted in more accurate and precise
estimates of ATT compared to the IPW method. However, the approach relies on the assumption that
the minimum possible dimension of the prognostic score is known. Also, it only works for linear
mixtures of unobserved confounders when using the linear ICA technique. Future research should
address these limitations by determining the lowest dimension of prognostic scores and applying
non-linear ICA techniques [3] to identify unobserved confounders in non-linear mixtures.
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