
SHPC 2021 Fall Term Project Report

2017-17091 Soheun Yi

December 21, 2021

Contents

1 Introduction 2

2 Performance Enhancing Methods 2

2.1 Basic Implementation . 2

2.2 Naive Parallelization . 2

2.2.1 Reducing Divergence . 3

2.3 Transposed Convolution as Matrix Multiplication 3

2.3.1 Formulating Transposed Convolution as Matrix Multiplication 3

2.3.2 Faster Matrix Multiplication . 5

2.3.3 Batched Matrix Multiplication . 8

2.4 Combining Two Methods . 8

2.5 Pinned Memory and Hiding Memory Operations 9

2.5.1 Pinned Memory . 9

2.5.2 Detour: Using Pinned Memory without Pinning outputs 10

2.6 Utilizing More GPUs . 11

3 Result 11

4 Execution Guideline 12

1

2 PERFORMANCE ENHANCING METHODS

1 Introduction

This report contains the process and result of the term project of Scalable High Performance

Computing(SHPC), Fall 2021. This project aims to perform the generation phase of the GAN

as fast as possible with limited resources. This is how the report is organized: in Section 2, we

propose methods for enhancing the performance of transposed convolution and explain how

those contribute to performance. In the following Section 3 and 4, we introduce the results

of the proposed methods and give guidelines for executing the implemented program.

2 Performance Enhancing Methods

2.1 Basic Implementation

First of all, we have repeated the process of sending inputs to GPUs and performing FLOPs

there, retrieving it back to the host and saving in output variables, for the sake of time

efficiency regarding data transfer.

2.2 Naive Parallelization

The most naive way of improving performance is to distribute for-loops in kernel codes to

multiple threads in GPUs. For instance, we can reduce time spent for calculations regarding

relu for N elements by implementing parallelization as the following code:

relu <<<N / BLOCK_SIZE , BLOCK_SIZE >>>(args ...)

batch norm and tanh layer operations can be processed with the same procedure. For

tconv(Transposed convolution) operation, we can see that there are three hierarchical for-

loops and we can match a thread for each (h out, w out, k)(vertical and horizontal co-

ordinate of an output, respectively.) pair to parallelize this operation. The following is the

implementation of the aforementioned parallelization for an output of size (H OUT, W OUT,

K):

__global__ void tconv(float *in, float *out , float *weight , float *bias ,

int H_IN , int W_IN , int C, int K)

{

int H_OUT = H_IN * 2, W_OUT = W_IN * 2;

2

2 PERFORMANCE ENHANCING METHODS

int h_out = blockDim.x * blockIdx.x + threadIdx.x;

int w_out = blockDim.y * blockIdx.y + threadIdx.y;

int k = blockDim.z * blockIdx.z + threadIdx.z;

if (h_out >= H_OUT || w_out >= W_OUT || k >= K) return;

...

}

// Execution

dim3 threads(4, 4, 2);

dim3 blocks(H_OUT/4, W_OUT/4, K/2);

tconv <<<blocks , threads >>>(args ...);

2.2.1 Reducing Divergence

IN GPUs, instruction executions are held in units of warps following the lock-step proce-

dure. Therefore, if-branches are inefficient because all single instructions generated within

if-branches are fetched, as long as values dealt in all threads and warps do not coincide. This

implies we can enhance efficiency by reducing if-branches in the kernel code.

We can observe that we can remove divergence regarding if (h in % 2 == 0 && w in % 2

== 0) written in tconv. Rather than utilizing if-branches, we can manually increment values

by 2 and pass them to r by modifying the for-loop on r without changing the code’s behavior.

This has brought about a 1.5× improvement in terms of calculation time.

2.3 Transposed Convolution as Matrix Multiplication

The second possible enhancement strategy is to view transposed convolution as a matrix

multiplication(MM) and implement a powerful MM algorithm. We first discuss how we can

represent transposed convolution as a MM, and introduce a powerful MM algorithm.

2.3.1 Formulating Transposed Convolution as Matrix Multiplication

As transposed convolution is an affine transformation of input, we can reasonably expect the

output O is represented as O = I ′W ′ + b′, where I ′,W ′, b′ are adequate transformations of

input I ∈ RHin×Win × C, weight W ∈ R5×5×K , and bias b ∈ RK .

3

2 PERFORMANCE ENHANCING METHODS

As (three-dimensional) output O is saved as a one-dimensional array, O′ as the following

representation is the two-dimensional array corresponding O.

O′ =

O[0, 0, 0] O[0, 0, 1] · · · O[0, 0, K − 1]

O[0, 1, 0] O[0, 1, 1] · · · O[0, 1, K − 1]
...

...
. . .

...

O[Hout − 1,Wout − 1, 0] O[Hout − 1,Wout − 1, 1] · · · O[Hout − 1,Wout − 1, K − 1]

(1)

Hout = 2Hin,Wout = 2Win (2)

We now aim to find I ′,W ′, b′ which satisfies O′ = I ′W ′ + b′ to find an accurate formula of

transposed convolution.

Denote J is a matrix which has applied padding(left=3, right=2, top=0, bottom=2) and

stride(=1) on I. As an example,

I =

[
1 2 3

4 5 6

]
=⇒ J =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 4 0 5 0 6 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

.

Now, observe how O′ is calculated. We can see that

O′[0, k] = O[0, 0, k] =
∑

0≤r≤4
0≤s≤4
0≤c≤C

J [r, s, c]W [4− r, 4− s, k, c] + b[k].

Using Python-ic notations(product is a row-majorized operation.),

4

2 PERFORMANCE ENHANCING METHODS

I0r,s := [J [r, s, c] for c in range(C)] (3)

I ′[0, :] := concat[I0r,s for (r, s) in product(range(5), range(5))] (4)

W k
r,s := [W [4− r, 4− s, k, c] for c in range(C)] (5)

W ′[:, k] := concat[W k
r,s for (r, s) in product(range(5), range(5))] (6)

O′[0, k] = 〈I ′[0, :],W ′[:, k]〉+ b[k] (7)

The last equation (7) implies O′[0, :] = I ′[0, :]W ′ + b. We can generalize this equation to

achieve a formula for O′[d, :].

O′[d, :] = O[bd/Woutc, (d mod Wout), :] (∵ (1)) (8)

O[x, y, :] =
∑

0≤r≤4
0≤s≤4
0≤c≤C

J [x + r, y + s, c]W [4− r, 4− s, k, c] + b[k] (9)

(10)

With defining

Idr,s := [J [bd/Woutc+ r, (d mod Wout) + s, c] for c in range(C)] (11)

I ′[d, :] := concat[Idr,s for (r, s) in product(range(5), range(5))], (12)

(13)

we have

O′[d, k] = 〈I ′[d, :],W ′[:, k]〉+ b[k] (14)

or equivalently O = O′(∵ (1)) = I ′W ′ + b1. This way, we can formulate transposed convo-

lution as a fused-multiply-add operation on matrices. We discuss how to use this relation in

2.3.3.

2.3.2 Faster Matrix Multiplication

For a faster MM algorithm than the simplest tiling MM algorithm, we divide operands into

multiple tiles analogous to the simplest algorithm but differ in the size of tiles. In calculating

5

2 PERFORMANCE ENHANCING METHODS

the multiplication of two matrices A and B, we divide A into T ×T tiles and B into T ×TV

tiles, where T and V is the size of a tile and a constant, respectively. Refer to Figure 1 for a

depiction of this procedure.

T

T

T

TV

A

B

Tile of A

Tile of B

T

T
a00 a10 · · · · · · aT−20 aT−10

a01 a11 · · · · · · aT−21 aT−11

...
...

.
...

...

...
...

.
...

...

a0T−2 a1T−2 · · · · · · aT−2T−2 aT−1T−2

a0T−1 a1T−1 · · · · · · aT−2T−1 aT−1T−1

T

TV
b00 b10 · bTV−2

0 bTV−1
0

b01 b11 · bTV−2
1 bTV−1

1

...
...

. .
...

...

...
...

. .
...

...

b0T−2 b1T−2 · bTV−2
T−2 bTV−1

T−2

b0T−1 b1T−1 · bTV−2
T−1 bTV−1

T−1

c00 c10 · cTV−2
0 cTV−1

0

c01 c11 · cTV−2
1 cTV−1

1

...
...

. .
...

...

...
...

. .
...

...

c0T−2 c1T−2 · cTV−2
T−2 cTV−1

T−2

c0T−1 c1T−1 · cTV−2
T−1 cTV−1

T−1

Tile of A

Tile of B

Figure 1: Matrix multiplication, tile-by-tile

6

2 PERFORMANCE ENHANCING METHODS

As in Figure 1, denote a tile of A by ATILE = (aji)(0 ≤ i < T, 0 ≤ j < T) and a tile

of B by BTILE = (bji)(0 ≤ i < T, 0 ≤ j < TV). Similarly, denote their multiplication,

CTILE = ATILEBTILE by CTILE = (cji)(0 ≤ i < T, 0 ≤ j < TV). Let i’th rows of them as ai,

bi, and ci respectively and j’th columns as aj, bj, and cj respectively. Then, we have

cj =
T−1∑
k=0

bjka
k

Utilizing this property, we employ TV threads to run the following Algorithm 1.

Algorithm 1 Faster Matrix Multiplication Algorithm

for x = 0, 1, ..., T − 1 do
for y = 0, 1, ..., T − 1 do

Ashared[x, y]← ATILE[y, x]
end for

end for
for k = 0, 1, ..., TV − 1 do

c← [0]× T
for t = 0, 1, ..., T do

b← BTILE[t, k]
c+ = b× Ashared[t, :]

end for
CTILE[:, k] = c

end for

For loading ATILE on a shared memory Ashared, we can use TV threads concurrently. To avoid

bank conflicts, we first transpose the original tiles and then load them. We can successfully

parallelize the algorithm in this way.

This algorithm is faster than the original tiling algorithm because the current CUDA cannot

operate with operands from two different shared memories. The original algorithm mostly

performs sharedA[t] * sharedB[k] for two different shared memories sharedA, sharedB,

which is extremely inefficient as two separate instructions are executed: loading one of

sharedA[t] or sharedB[k] on a register and then performing float multiplication.

For better performance, we implemented a similar operation to the fused-multiply-add oper-

ation referring to [1], [2].

7

2 PERFORMANCE ENHANCING METHODS

2.3.3 Batched Matrix Multiplication

The efficiency of MM gets better as the size of operands get bigger since compute-to-memory

becomes more efficient. Therefore, we can expect improvement in performance if we replace

multiple MMs with a single, larger MM. To obtain this, we make a batch and use it as an

operand by concatenating transformed inputs I ′0, . . . , I ′B−1 and then multiply transformed

weight W ′, as explained in 2.3.1.
I ′0
I ′1
...

I ′B−1

W + b1BHoutWout =

I ′0W + b1HoutWout

I ′1W + b1HoutWout

...

I ′B−1W + b1HoutWout

Especially, C language is row-majorized, so we do not need any form of reshaping while

concatenating transformed inputs horizontally, and at the same time we do not need to

take care of recovering evaluations of calculations. We have implemented this and confirmed

improvement in performance.

2.4 Combining Two Methods

Whether of the two optimization methods introduced(NAIVE, MM) is better depends on the

input size and number of output channels. Therefore, we have considered three cases: first,

the preceding two transposed convolutions are done with MM and others with NAIVE(2 MM

+ 2 NAIVE). Second, the preceding three transposed convolutions are done with MM and

the other with NAIVE(3 MM + 1 NAIVE), and lastly, all transposed convolutions are done

with MM(4 MM). We investigated each case using Nsight, and we have obtained results in

Figure 5.

8

2 PERFORMANCE ENHANCING METHODS

Figure 2: 2 MM + 2 NAIVE

Figure 3: 3 MM + 1 NAIVE

Figure 4: 4 MM

Figure 5: Combining optimization methods: Result on 16 inputs. Time scaled.

As one can see, the first two MM kernels take a similar amount of time, but other operations

differ largely. In the case of 2 MM + 2 NAIVE, the bottleneck in third tconv appears. On

the other hand, the last tconv in the case of 4 MM takes a long time as channel size(=3) of

the last operation is relatively small to reduce compute-to-memory and thereby aggravates

performance to be lower than NAIVE operation. Therefore, we have applied 3 MM + 1

NAIVE to obtain the best performance.

2.5 Pinned Memory and Hiding Memory Operations

2.5.1 Pinned Memory

Pinned memory is fixed to the RAM and cannot be paged out by the OS. The counterpart

term is named pageable memory. In transferring host memory to device memory, CUDA

checks if such memory is either pinned or pageable. If the memory is pinned, CUDA only

needs a physical page of the memory and therefore does not require the aid of the DMA

engine. On the other hand, CUDA needs a DMA engine to respond correctly to page faults.

This causes a certain overhead on loading memory, resulting in a longer time spent loading

pageable memory than that of pinned memory.

9

2 PERFORMANCE ENHANCING METHODS

2.5.2 Detour: Using Pinned Memory without Pinning outputs

We took a detour to use pinned memory as there is a restriction that we cannot modify

main.c. We first declared

cudaMallocHost(&outputs buffer, BATCH SIZE * OUTPUT SIZE * sizeof(float))

OUTPUT SIZE = 64 ∗ 64 ∗ 3)

to save batched output on a pinned memory outputs buffer. Thereafter, we processed inputs

by batch and sent them to output buffer, and then gradually copied them onto outputs.

Meanwhile, copying values from outputs buffer to outputs are performed sequentially and

thus takes some time(about 60ms for num to gen = 1000), so we overlapped(hid) this time

with GPU kernel runtime. Regarding implementation, we have started this copying operation

after the third tconv operation and before the next batch norm call. The result for this is

as Figure 6

Figure 6: Host memory copy operation hidden by kernel operations

As one can see, the ones at the bottom are CUDA APIs called from the host, and there is

some stall of kernel calls. Such interval corresponds to the memory copying operation, which

10

3 RESULT

is perfectly hided behind kernel executions.

2.6 Utilizing More GPUs

Lastly, we have used two available nodes, each with four GPUs. In deploying n processes

for each node, we have found that mpi process ranks for the first node are 0, · · · , n− 1 and

n, · · · , 2n − 1 for the other. Using this pattern, we made each mpi process use mpi rank %

(mpi size / 2)’th GPU, which can be marshaled as the following:

Table 1: --n-tasks-per-node=1

GPU 0

node 0 rank 0

node 1 rank 1

Table 2: --n-tasks-per-node=2

GPU 0 GPU 1

node 0 rank 0 rank 1

node 1 rank 2 rank 3

Table 3: --n-tasks-per-node=4

GPU 0 GPU 1 GPU 2 GPU 3

node 0 rank 0 rank 1 rank 2 rank 3

node 1 rank 4 rank 5 rank 6 rank 7

3 Result

Denote BLOCK SIZE as a number of blocks per threads regarding tanh, batch norm, relu

kernels, T SIZE, V SIZE as values of T , V introduced in 2.3.2 respectively, and BATCH SIZE as

inputs per batches in 2.3.1. Configuring BLOCK SIZE=128, T SIZE=16, V SIZE=4, BATCH SIZE=100,

running time of the whole operation was as Table 4.

11

4 EXECUTION GUIDELINE

num to gen GPU=1 GPU=2 GPU=4

10 0.039 0.088 0.154

100 0.065 0.102 0.155

880 0.248 0.197 0.224

1000 0.278 0.224 0.236

2224 0.485 0.362 0.311

2512 0.536 0.391 0.333

4856 0.955 0.603 0.506

5248 1.014 0.647 0.504

Table 4: Performance(sec) by num to gen, # of GPU per node

When num to gen is small, it reveals that the performance is better with fewer GPUs. This is

allegedly due to the relatively large overhead caused by transactions between mpi processes

than cost reduced by less calculation per GPUs. As num to gen gets larger, utilizing more

GPUs achieves far higher performance, due to the reduction of calculations per GPUs.

4 Execution Guideline

• The basic execution is as follows.

make run parallel INPUT=(input filename without .txt)

OUTPUT=(output filename without .txt/.bmp) NGPUS=(#

of GPUs per node)

– E.g. : make run parallel INPUT=input1 OUTPUT=output1 NGPUS=4

⇒ Get input1.txt as an input, print output1.txt, output1.bmp as an output

with using 4 GPUs per nodes.

– Possible values for NGPUS are 1,2, and 4.

• If num to gen is less than 200, define NGPUS=1. If it is between 200 and 1000, define

NGPUS=2. Otherwise, define NGPUS=4. These are optimal choices. If one cannot judge

which one is optimal, take NGPUS=4, which is generally the best option.

12

REFERENCES

References

[1] url: https://github.com/Huanghongru/SGEMM-Implementation-and-Optimization.

[2] url: https://ecatue.gitlab.io/gpu2018/pages/Cookbook/matrix_multiplication_

cuda.html.

13

https://github.com/Huanghongru/SGEMM-Implementation-and-Optimization
https://ecatue.gitlab.io/gpu2018/pages/Cookbook/matrix_multiplication_cuda.html
https://ecatue.gitlab.io/gpu2018/pages/Cookbook/matrix_multiplication_cuda.html

	Introduction
	Performance Enhancing Methods
	Basic Implementation
	Naive Parallelization
	Reducing Divergence

	Transposed Convolution as Matrix Multiplication
	Formulating Transposed Convolution as Matrix Multiplication
	Faster Matrix Multiplication
	Batched Matrix Multiplication

	Combining Two Methods
	Pinned Memory and Hiding Memory Operations
	Pinned Memory
	Detour: Using Pinned Memory without Pinning outputs

	Utilizing More GPUs

	Result
	Execution Guideline

